

PolyZen Devices— Polymer Protected Zener Diode

PolyZen devices are polymer protected precision Zener diode micro-assemblies. They offer resettable protection against multi-watt fault events while exhibiting only 0.7W power dissipation that requires no special heat sinking.

The relatively flat voltage vs. current response of the PolyZen device helps clamp the output voltage, even when input voltage and source currents vary.

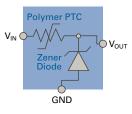
An advanced feature of the PolyZen micro-assembly is that its Zener and follow-on electronics are additionally protected by a resistively non-linear, polymer PTC (positive temperature coefficient) layer. This PTC layer is fully integrated into the device, is thermally coupled to the diode, and is electrically in series between V_{IN} and the diode clamped V_{OUT} .

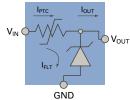
This advanced PTC layer responds to either diode heating or overcurrent events by transitioning from a low to high resistance state, also known as "tripping". A tripped PTC will limit current and generate a voltage drop, which helps to protect both the Zener and the follow-on electronics. This integrated PTC effectively increases the diode's power handling capability.

Benefits:

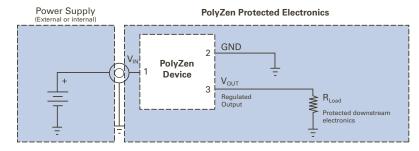
- Helps shield downstream electronics from overvoltage and reverse bias
- Trip events shut out overvoltage and reverse bias sources
- Analog nature of trip events minimizes upstream inductive spikes
- Helps reduce design costs with single component placement and minimal heat sinking requirements

Features:


- Overvoltage transient suppression
- Stable V₇ vs. fault current
- Time delayed, overvoltage trip
- Time delayed, reverse bias trip
- Power handling on the order of 100 watt
- Integrated device construction
- RoHS compliant

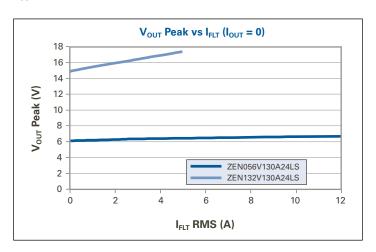

Applications:

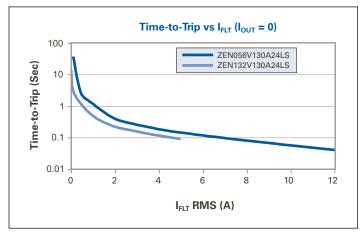
- DC power port protection for systems using barrel jacks for power input
- DC power port protection in portable electronics
- Internal overvoltage and transient suppression
- DC output voltage regulation

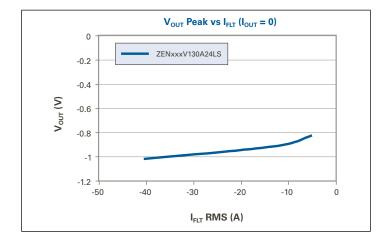

Definition of Terms

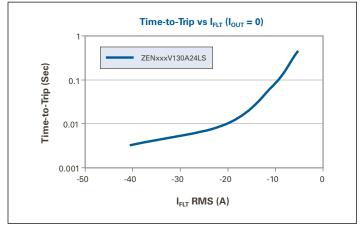
V_z	V_{OUT} as measured under a specified diode test current ($I_{FLT} = I_{zt}$)				
I _{zt}	Current at which V_z is measured. I_{zt} is time limited (typically 100 μ Sec)				
I _{HOLD}	Maximum steady state I_{PTC} that will not generate a trip event at the specified temperature. Specification assumes I_{FLT} is sufficiently low so as to prevent the diode from acting as a heat source.				
R Typ	Resistance between V _{IN} and V _{OUT} pins during normal operation at room temperature				
R _{1 MAX}	The maximum resistance between V_{IN} and V_{OUT} pins during normal operation at room temperature, one hour after first trip or after reflow soldering				
I _{FLT}	Current flowing through the Zener diode				
I _{FLT} Max	Maximum RMS fault current the diode portion of the device can withstand and remain resettable; testi is conducted at +/- 24V and -16V with no load connected to V _{OUT} .				
V _{INT} Max	The voltage $(V_{IN} - V_{OUT})$ at which typical qualification devices (98% devices, 95% confidence) survived at least 100 trip cycles and 24 hours trip endurance at the specific voltage and current I_{PTC}				

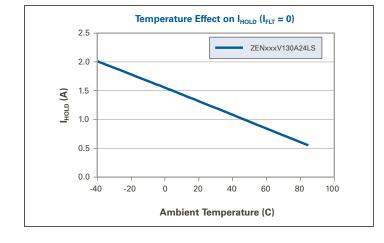
Typical Application Block Diagram

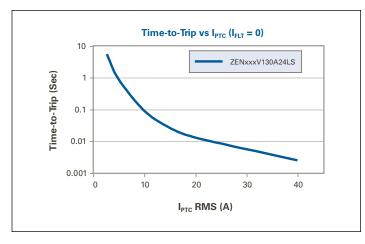


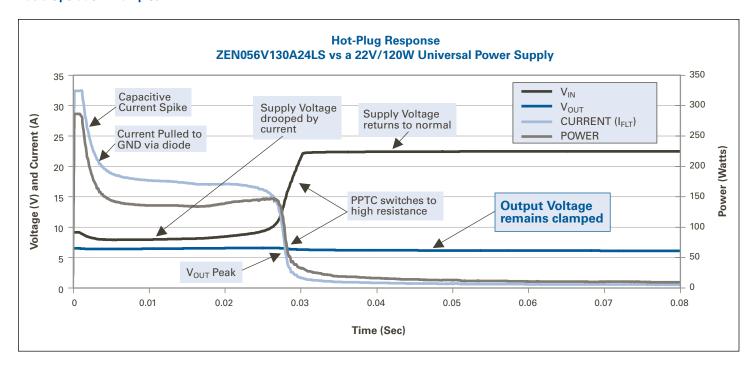

	Part Number	V _z (V) Typical	I _{zt} (A)	I _{HOLD} @ 20°C (A)	R Typ (Ω)	R _{1 Max} (Ω)	V _{INT} Max @ 3A (V)	I _{FLT} Max (A)	Typical Power Dissipation (Post Trip) (W)
Soon	ZEN056V130A24LS	5.6	0.1	1.3	0.12	0.16	24	+10 / -40	0.7
Soon	ZEN065V130A24LS	6.5	0.1	1.3	0.12	0.16	24	TBD / -40	0.7
00011	ZEN098V130A24LS	9.8	0.1	1.3	0.12	0.16	24	TBD / -40	0.7
Soon	ZEN132V130A24LS	13.4	0.1	1.3	0.12	0.16	24	+3 / -40	0.7
00011	ZEN164V130A24LS	16.4	0.1	1.3	0.12	0.16	24	TBD / -40	0.7

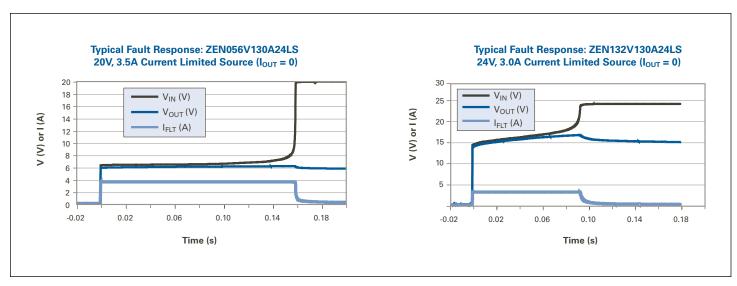

Typical Performance Curves


Coming So


Coming S



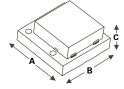




General Characteristics

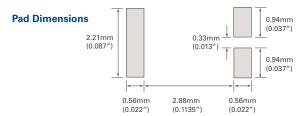
Operating Temperature Range	-40° to +85°C	
Storage Temperature	-40° to +85°C	
ESD Withstand	15KV	Human Body Model
Diode Capacitance	4200pF	Typical @ 1MHz, 1V RMS
Construction	RoHS compliant	

Basic Operation Examples

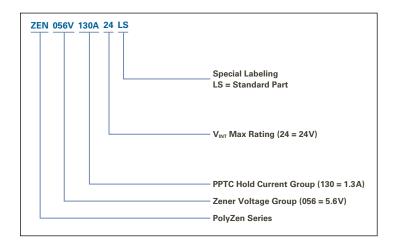


Packaging and Marking Information


Part	Bag	Tape & Reel	Standard
Number	Quantity	Quantity	Package
ZENxxxVyyyAzzLS	-	3,000	15,000


Mechanical Dimensions

	Α			В		С	
	Min	Max	Min	Max	Min	Max	
mm	_	4.2	_	4.2	_	2.1	
inch	_	(0.17)	_	(0.17)	_	(0.083)	


Configuration Information

Pin Number	Pin Name	Pin Function
1	V_{IN}	V_{IN} = Protected input to Zener diode
2	GND	GND = Ground
3	V_{OUT}	V _{OUT} = Zener regulated voltage output

Part Numbering System

a vital part of your world

Worldwide Headquarters

308 Constitution Drive, MS R21/2A Menlo Park, CA USA 94025-1164 Tel (800) 227-7040 (650) 361-6900 Fax (650) 361-2508 www.circuitprotection.com www.circuitprotection.com.hk (Chinese) www.raychem.co.jp/polyswitch (Japanese)

Raychem, PolyZen, and Tyco are trademarks. All information, including illustrations, is believed to be reliable. Users, however, should independently evaluate the suitability of each product for their application. Tyco Electronics Corporation makes no warranties as to the accuracy or completeness of the information, and disclaims any liability regarding its use. Tyco Electronics' only obligations are those in the Company's Standard Terms and Conditions of Sale for this product, and in no case will Tyco Electronics be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use or misuse of the product. Specifications are subject to change without notice. In addition, Tyco Electronics reserves the right to make changes—without notification to Buyer—to materials or processing that do not affect compliance with any applicable specification.